

ENR 220 Electric Circuit Analysis

Fall 2023

Course Credits: 4

Contact Hours: 56 hours

Instructor: TBA

Email: TBA

COURSE OBJECTIVES

This course is intended to provide insights into fundamental electric circuit analysis theory, problems and their applications in electrical engineering. Covered topics include electric circuit elements, techniques of circuit analysis, inductance, capacitance and mutual inductance, solution of first and second-order networks, steady-state analysis, sinusoidal steady-state analysis, electrical circuit analysis using Laplace transforms, frequency selective circuits, two-port networks and network functions.

Upon completion of this course, students will be able to:

- 1. Develop a deep understanding of basic electrical circuit elements and their functions.
- 2. Apply various circuit analysis techniques, including nodal analysis, mesh analysis, Thevenin and Norton equivalent circuits, and Laplace transform methods.
- 3. Understand the appropriate use of specific circuit configurations and compare the applications of different types of electric circuits.
 - 4. Compare and contrast the operation of various types of electrical elements.
- 5. Acquire practical problem-solving skills and the ability to real-world circuit design and analysis tasks.

PREREQUISITES

MAT 337 Differential Equations for Engineers PHY 118 Physics for Engineers

GRADING

Grades will be determined by accumulating points, with 100 points being the maximum, as follows:

ITEM	POINTS
Assignments	20 Points
Midterm 1	15 Points
Midterm 2	15 Points
Project	20 Points
Final Exam	30 Points
Total	100 Points

Late submissions will be graded at the end of the course. Grades will be assigned according to the following rule:

$$A \ge 90 > B \ge 80 > C \ge 70 > D \ge 60 > F.$$

We reserve the right to make adjustments to the overall grading policy.

COURSE MATERIALS

Required Texts:

James W. Nilsson, Susan A. Riedel, *Electric Circuits*, 11th Edition, Pearson Education, 2018.

Recommended (Optional) Texts or Other Materials:

None

COURSE TOPICS

MODULE	TASKS
Module 1	Topics:
	Topic 1: Introduction and Course Overview
	Topic 2: Electric Circuit Variables
	Topic 3: Electric Circuit Elements
	Topic 4: Simple Resistive Circuits
	Assessments:
	Assignment#1

	Topics:
Module 2	Topic 5: Techniques of Circuit Analysis: Node-Voltage Method
	Topic 6: Techniques of Circuit Analysis: Mesh-Current Method
	Topic 7: Thevenin and Norton Equivalents; Maximum Power Transfer
	Topic 8: Inductance, Capacitance, and Mutual Inductance
	Assessments:
	Assignment#2
	Project
	Topics:
	Topic 9: Response of First-Order RL and RC Circuit
	Topic 10: Natural and Step Responses of RLC Circuits
Module 3	Topic 11: Sinusoidal Steady-State Analysis
	Topic 12: Sinusoidal Steady-State Power Calculations
	Assessments:
	Midterm#1
	Project
Module 4	Topics:
	Topic 13: The Operational Amplifier
	Topic 14: Balanced Three-Phase Circuits
	Topic 15: Introduction to the Laplace Transform
	Topic 16: The Laplace Transform in Circuit Analysis
	Assessments:
	Midterm#2
	Project due
Module 5	Topics:
	Topic 17: Introduction to Frequency Selective Circuits
	Topic 18: Two-Port Networks and Network Functions
	Topic 19: Two-Port Circuits
	Topic 20: Final Exam Review
	Assessments:
	Final Exam

ATTENDANCE

1) Class attendance is required. Missing classes without permission will lead to decrease in overall grade.

Missing less than two classes: no penalty.

Missing more than two classes: 7% will be taken off from the overall grade.

If the instructor reports a student's frequent missing of class to the Soochow University Academic Administration Office, the student might get a written warning

and might be prohibited from attending final exam.

2) Participants in this course are expected to arrive in class promptly and adequately prepared. The primary objective of this course is to critically engage with the readings and the subject matter. Therefore, course participants are expected to have completed the reading prior to class and prepare thoughtful reflections/commentaries to share with fellow colleagues.

LEARNING REQUIREMENTS

- 1) Late assignments are not acceptable and are subjected to grade deductions.
- 2) Assignments submitted in the wrong format will be counted as not submitted.
- 3) Failure to submit or fulfill any required course component results in failure of the class.
- 4) Make-up for midterm and final exams only with valid excuses, as defined by the University.
- 5) In order to earn a Certificate of Completion, participants must thoughtfully complete all assignments by stated deadlines and earn an average quiz score of 50% or greater.

TECHNOLOGY POLICY

The use of electronic devices in class is distracting, both for the user and for the rest of the class. Only non-programmable calculators can be used in the tests and exam. Any attempts to use cell phones and other electronic communication devices will be seemed as cheating. Laptops are discouraged, unless you use them for activities DIRECTLY related to the course (eg., note taking, reading course documents).

ACEDEMIC INTEGRITY POLICY

Soochow University highly values the academic integrity and aims to promote the academic fairness, honesty and responsibility. Any academic dishonesty behaviors and any attempts to cheats and plagiarism will be reported to the university administration office. A written warning and the relevant penalties will be imposed. The record might be shown on the official university transcript.

DISABILITY ACCOMMODATION

Soochow University is committed to maintaining a barrier-free environment so that students with disabilities can fully access programs, courses, services, and activities at Soochow University. Students with disabilities who require accommodations for access to and/or participation in this course are welcome.

Note:

Please contact the University Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material.